
[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [231]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

EMMO MODEL FOR E-LEARNING
Bineeta Kumari Gupta

Software Deeveloper 2, Oracle India Pvt.Ltd

ABSTRACT
Online learning is becoming a revolutionary force for improvement in education standards and quality. The

applications include digital libraries (text documents, images, sound, video), manufacturing and retailing, art and

entertainment, journalism and so on.. Normal databases are incapable of handling such wide range and huge amount

of data. So we need database to support storage, indexing, retrieval of huge and wide variety of data. This paper

present a different way of storing multimedia data in order facilitate easy indexing and retrieval- EMMO. The

motivation for the development of the Emmo model is the desire to realize multimedia content sharing and

collaborative applications on the basis of semantically modeled content but to avoid the limitations and difficulties

of current semantic modeling approaches implied by their isolated treatment of media, semantic description, and

content functionality. ProxyMity Web Publish tool allow the user to create a composite lecture by retrieving

Lecture videos and Presentation Slides from the database. This lecture and slides are bind together and displayed to

the user in the form of HTML browser application. By using EMMO Model, the media aspects, semantic aspects

and functional aspects of Lecture video, Presentation slides and any multi-media data are stored in the database. This

provides the efficient storage of content in the database, supports content-based queries over multimedia objects. It

is an attempt to create software for integrating different multimedia data with respect to the users’ necessity.

KEYWORDS: ProxyMITY, Query optimization, indexing, ontology, EMMO Nodes, B Trees, Lucene, Optical

Character Recognition

 INTRODUCTION
It is difficult for a large number of students, teachers

and professionals to meet the challenges of the fast

developing technology. Scarcity of adequate and

competent guidance, unavailability of study material,

constrained personal circumstances and rigid

education system are the few causes for this result.

There is a need for an easy access to resources, which

may be the key factor of encouraging more learning.

With the use of e-learning the above mentioned

limitations can be overcome by allowing access to

distant learning material thereby making it possible to

sync one’s learning with rest of the world. Search

engines based on Natural Language Processing help

us to get to the links, which are more close to what

we, demand. But the results shown by search engines

and the relevance to what we actually want is still not

very close. The Internet service providers are missing

out a few basic but important learning factors, such

as learning media semantics, learning personalization

and re-usability. Much effort has been put into the

technical reuse of electronically based teaching

materials and in particular creating or re-using

Learning Objects. These are self contained units that

are properly tagged with keywords, or other

metadata, and often stored in an XML file format.

Creating a course requires putting together a

sequence of learning objects. There are proprietary

and open, non-commercial and commercial, peer-

reviewed repositories of learning objects. E-learning

material is subjected to continuous modifications and

revision. We need to maintain all semantic

information related to multimedia learning content,

user personalization, and substitutes for topics.

Searching multimedia content, particularly audio-

visual data is still a challenging task. Data extractors

from such data based on speech recognition are used

but they do not provide accurate results and the

relevance of this data to the actual data is

considerably low. Another important factor for

teaching is the learner’s pace and his/her level of

understanding on the particular topic. For example a

learner may not be able to grasp some difficult part of

the live lecture given by his/her professor. But since

rest of the class understood the concept well the

professor goes further to teach more advanced topics.

The learner who could not grasp the current topic

would not be able to understand the further course. E-

learning reduces the human intervention in the

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [232]

process of learning, and because of this, special

attention needs to be given to the level of difficulty

and the quality of subject matter provided to the

learner, implying e-learning should be user centric.

The content of the lecture should be modified such

that it is easy to understand by different types of

learners. The multimedia database systems are to be

used when it is required to administrate huge

amounts of multimedia data objects of different types

of media data (optical storage, video tapes, audio

records, etc.) so that they can be used (that is,

efficiently accessed and searched)for as many

applications as needed. The Objects of Multimedia

Data are: text, images, graphics, sound recordings

and video. The model for Enhanced Multimedia Meta

Objects (EMMOs) was developed from the intuition

that in a knowledge and content sharing economy,

different applications would need to adhere to open

standards with respect to the containers that

knowledge and media objects are delivered in. The

idea was to standardize a number of interfaces that

such container objects would require. Examples are

interfaces for querying the ontology, for accessing

digital rights information, and for adding further

knowledge to an existing EMMO, using different

authoring tools. The EMMO model can be regarded

as an enrichment layer on top of standard database

technology. The fundamental idea underlying the

concept of Emmo is that an Emmo is an object

unifying three different aspects of multimedia

content, namely the media aspect, the semantic

aspect, and the functional aspect.

PROXIMITY MODEL
Proximity is intended to be an open source e learning

tool that helps create dynamic rich media lectures. It

allows sharing of prepared lectures to others through

web, through intranet, or through a third party e-

service provider. As the name suggests,

“ProxyMITY” serves as a “proxy”, i.e. it provides

virtual closeness (proximity) without the actual

classroom. It is a tool, that helps teachers create

dynamic, rich-media lectures: ones that go beyond

using simple text and images. It provides easy

incorporation of audio, video, and still images with

the lecture presentation slides, to create dynamic,

distributable, rich-media lectures.

EMMO
Enhanced Multimedia Meta Object is a multimedia

content object which comprises three basic units of

information described below. It also supports the

“Version" Aspect of each of the multimedia object.

1. Media Aspects:

Media Aspect of EMMO involves, the actual multi-

media content, which may be in the form of either

Video or Images or presentation files etc. The media

aspect describes that an EMMO aggregates the media

objects of which the multimedia content consists.

2. Semantic Aspects:

The semantic aspect reflects that an EMMO further

encapsulates semantic associations between its

contained media objects by means of a graph-based

model similar to conceptual graphs. Hence, an

EMMO constitutes a unit of expert knowledge about

multimedia content.

3. Functional Aspects:

Functional aspect, gives a list of domain-specific

actions involved with each different type of MO. The

functional aspect expresses that an EMMO offers

operations for dealing with its content, which can be

invoked by applications.

4. Version-ning:

EMMO allows us to keep track of versions of each of

the MO created. An EMMO can be serialized into a

bundle that completely encompasses all Multimedia

Database three aspects, and is thus transferable in its

entirety between different EMMO providers,

including its contained media objects, semantic

associations between these objects, and f

unctionality. Moreover, versioning support has been

a central design objective: all the constituents of an

EMMO can be versioned, thereby paving the way for

the distributed, collaborative construction of

EMMOs.

EMMO ENTITIES
Each Emmo object has a distinct set of four entities

to completely define it

Each entity Ω is characterized by thirteen different

properties.

Ω= (ow, nw, kw, sw, tw, Tw, Aw, Cw, Nw, Pw, Sw,

Fw, Ow) where,

Ω - An entity, thirteen tuple

Οw - Global and unique Identifier

nw - Entity name

kw - Kind of entity kw are “lmp", “ont", “asso",

“emmo"

sw -Source entity of an association

tw - Target entity of an association

Tw - Type of the entity, giving ontology information

about the object

Aw - List of application dependent attributes

Cw - Connectors, for the involved physical media

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [233]

Nw - List of all the entities in the current EMMO

instance

Pw - Preceding version

Sw - Successor version

Fw - set of more features related to the current

EMMO, example- time stamp etc.

Ow - Operations permitted for the current EMMO

Logical Media Part (Г):

These represent the Media aspect of EMMO.

Connectors help to model the media part at logical

level, along with the connection to its physical media

content representing the object.

Ontological Objects (Ѳ): This helps maintain the

semantics behind each MO node and its entities, thus

catering to the Semantic aspect of EMMO model.

These entities represent the concept ofentity.

Associations(A): These entities maintain the binary

semantic relation between any two other entities,

again catering to the semantic aspect.

EMMO Nodes(Σ): EMMO model is extensive

graphical structure of object instances. Thus a single

EMMO object may have its entities associated to yet

another EMMO object. All the integrated in-

formation is in the form of root node, comprising of

more EMMO objects, in a hierarchical organization.

EMMO objects might be independent i.e. in no

association with all other objects in the same level.

Sometimes they may even have sister object in

hierarchically lower level of the same EMMO. We

are using the EMMO’s concept in representing the

data which consists of some videos in an efficient

manner without any loss of information. As the

definition of EMMO, it defines the information in the

form of objects and entities. The data is stored using

different tables and relations.

FIG: EMMO Model for Lecture CS101

The different tables used in the EMMO

representation are as under:

1. Entity : Each entity w has a global and unique

object identifier (OID) ow represented as universal

unique identifier (UUID), which enables the unique

identification of entities in distributed scenarios.

As UUIDs are not really useful for humans, each

entity w has also a human readable name expressed

as string value. For classifying whether an entity w is

a logical media part, an ontology object, an

association, or an EMMO, its kind is specified

accordingly.

2.Kind: Kind table is used to classify the entity type

whether it is lmp, ontology object, an association, or

an EMMO.

3. Attribute: Each entity possesses an arbitrary

number of application-dependent attributes.

Attributes are represented as attribute-value pairs

with the attribute name being a concept of domain

ontology.

4. Type: It stores the ontology_id and type_id. Each

entity w is described by a set of types Tw, i.e. a set of

ontology objects, enabling the classification by

concepts taken from domain ontology.

5. Connector: The connectors Cw establish a

connection to the physical media data of a logical

media part. Each connector consists of a media

profile, which describes the storage location by either

embedding the raw media data or by referencing the

media data via a URI, and a media selector, which

provides means to address selected parts of the media

object.

6. MediaSelector_kind: MediaSelector_kind stores

the information that whether the given kind is spatial,

textual, temporal or full part.

7. MediaSelector_parameter: Media Selector

parameter table consists of media selector id, its

parameter and parameter value. The parameter value

consists of the duration of each logical media part.

8. Media profile: (mediaprofile): MediaProfile

table consists of mediaprofile_id and media instance.

Media profile is used to store the path of the stored

object.

9. Metadata: Meta table consists of mediaprofile_id,

metadata and metadata_value. Meta table consists of

metadata and metadata value such as format, size of

the entity.

10. Association: Association table consists of uuid,

source_id and target_id. By specifying exactly one

source and target entity sw and tw, an association

establishes a directed binary relationship between

those entities. Associations describe binary directed

semantic relationships between entities. Thus, they

contribute to the semantic aspect of multimedia

content. By being modeled as entities, associations

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [234]

can take part in other associations, and thus enable

the reification of associations in the EMMO model.

11. EMMO operator: (operator): EMMO operation

table consists of four attributes uuid, designator,

operator_function and operator_description. An

EMMO offers operations Ow, which can be invoked

by external applications. The implementation of an

operation is described by a mathematical function.

12. Operation table: The Operation table consists of

operator_id and emmo_id. The operation can be

implemented on the emmo.

13. Nodes: Node table consists of emmo_id,

nodes_id. An EMMO constitutes a container of all

entities specified in the set nodes.

14. Successor table: (successor) and Predecessor

table: (predecessor) Each successor and predecessor

table consists of emmo_id in both the tables

successor_id, predecessor_id respectively. For

providing versioning support, a set of preceding

versions Pw and succeeding versions Sw can be

assigned to each entity w. Each version of w is again

an entity of the same kind kw. By also treating an

entity’s versions as entities, different versions of an

entity can be interrelated just like any other entities,

thus allowing to establish relationships between

entity versions.

14. Features: Features table consists of uuid, feature

and feature_value. As it might be necessary in an

implementation of the model to augment an entity w

with further low-level data, such as time stamps or

status information, in a flexible, ad-hoc manner, a set

of features Fw, represented as feature-value pairs,

can be attached to the entity. In contrast to attributes,

feature names are not ontology objects but simple

strings.

EMMO Algebra : Extraction Operator, Navigation

operator, Constructors, Selection predicates, Join

operators.

Lucene

 Lucene has been chosen for performing full text

search queries on the database. In our system

keyword search on the database takes a few minutes

to return results. This is the reason we choose lucene

to handle the keyword based searches. Lucene is a

high-performance, full-featured text search engine

library written entirely in Java. It is a technology

suitable for nearly any application that requires full-

text search, especially cross-platform. Lucene is a

text search engine created in Java. Lucene is a

popular text search engine library written entirely in

Java. It is developed from the Apache Software

Foundation. Lucene offers a powerful feature through

a simple API. It can be used to index word

documents, HTML and XML files. Lucene is a text

search engine created in Java. Lucene is a popular

text search engine library written entirely in Java. It

is developed from the Apache Software Foundation.

Lucene offers a powerful feature through a simple

API. It can be used to index word documents, HTML

and XML files.

FIG: Main Diagram from ProxyMITY Model

EMMO IMPLEMENTATION FOR

PROXYMITY MODEL

 EMMO, being a hierarchical graph structure, while

implementing it on the lines of Relational database

model, we come across few constraints, as listed

below:

1. EMMOs thirteen tuple structure : EMMO, is

represented in the form of a 13-tuple set. Having this

13 tuple set as a record in relational database is

wastage of memory. This occurs due to the fact that

not all attributes involved in this 13 tuple are utilized

by all entities. Consider the basic one, Ontology part,

which only has the type, kinds and name defined.

Along with no description as to which other EMMO

entity it does belong to. An EMMO entity, requires a

set of other entitys uuid/reference.

 2. Multivalued Attributes : The attribute Aw, a list

of all application dependent attribute and Fw, a set of

features related to given entity, are both multivalued

attributes. These values are not only used by specific

application requirement, but also provide with the

ontology information pertaining to given entity, so

are necessary for information specific queries.

Further, Operations, Media Selectors, EMMO entities

are all multivalued attributes.

 3. Connectors : They are pairs of MediaProfiles and

MediaSelectors, specific to a given Logical media

part entity. Media profiles are allowed to be shared

Media.html

Video.html

Index.html

VideoTopic.htm

l

Create Object

Retrieve Data

Search Entity

Lucene LuceneIndex

EMMO

Database

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [235]

among other logical media part entities. The relation

between a video and the associated slide is created

through associations. Any media whether it be a

video or a slide image is represented using a

lmp(logical media profile) or a connector which

stores meta information of the media and the location

of the file. The connector also contains the attributes

of how the association is made with another lmp.

SEARCHING IN THE DATABASE
Here we describe how search and data retrieval has

been implemented in the backend of ProxyMITY.

We also describe the challenges that we faced on

performing search on a database with a million rows.

Building of Sample Database : For being able to

perform search on the database first we need to insert

data into the database. We had compiled data for 6

courses in XML format. This data was converted into

the emmo format and then inserted in the database. A

Java code was written for conversion of the xml data

into the emmo structure and then dumping it into the

database.

LUCENE FOR TEXTUAL SEARCH IN

PROXYMITY

We utilized lucene to index all the tables containing

text content in our database.

The following tables were indexed using lucene –

 • entitymain : This table is the core table of emmo

database as every entity present in the database has

an entry in it. It has a ‘varchar‘ field which stores the

name of the field. We want to perform the full text

search on this field. As this field contains the name of

the entity which could be a lecture name, topic name,

course name, professor name etc. So we want to store

the ‘varchar‘ field and the associated ‘uuid‘ field in

the lucene index thereby making it fast. In our

experiments the full text search performed by the

MySQL database takes 117 seconds.

 • mediaprofile : This table contains the location of

the media file. If we are searching for a particular

media file by its name say we are looking for the

video on lectures than this table could come out to be

helpful. The results of the search performed by

lucene are utilized to find out more information about

the entities. For eg. in the ‘entitymain’ table we have

indexed ‘entityname’ and ‘uuid’ of the entity. So

through the lucene based search we retrieve the

uuid’s of the entities and then use the uuid to gather

more information about the entity from the database.

FIG: E-R Representation of EMMO

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [236]

INDEXING ARCHITECTURE IN

DATABASE
 Non-clustered The data is present in arbitrary order,

but the logical ordering is specified by the index. The

data rows may be spread throughout the table

regardless of the value of the indexed column or

expression. The non-clustered index tree contains the

index keys in sorted order, with the leaf level of the

index containing the pointer to the record (page and

the row number in the data page in page-organized

engines; row offset in file-organized engines).

In a non-clustered index:

 • The physical order of the rows is not the same as

the index order.

 • Typically created on non-primary key columns

used in JOIN, WHERE, and ORDER BY clauses.

There can be more than one non-clustered index on a

database table. Clustered Clustering alters the data

block into a certain distinct order to match the index,

resulting in the row data being stored in order.

Therefore, only one clustered index can be created on

a given database table. Clustered indices can greatly

increase overall speed of retrieval, but usually only

where the data is accessed sequentially in the same or

reverse order of the clustered index, or when a range

of items is selected.

B TREES
In the current version of MySQL that we are using B

Tree indexing is the standard indexing algorithm used

for indexing of the tables. B-tree is a tree data

structure that keeps data sorted and allows searches,

sequential access, insertions, and deletions in

logarithmic time. The B-tree is a generalization of a

binary search tree in that a node can have more than

two children. Unlike self-balancing binary search

trees, theB-tree is optimized for systems that read and

write large blocks of data. In B-trees, internal (non-

leaf) nodes can have a variable number of child nodes

within some pre-de_ned range. When data are

inserted or removed from a node, its number of child

nodes changes. In order to maintain the pre-de_ned

range, internal nodes may be joined or split. Because

a range of child nodes is permitted, B-trees do not

need re-balancing as frequently as other self-

balancing search trees, but may waste some space,

since nodes are not entirely full. The lower and upper

bounds on the number of child nodes are typically

_xed for a particular implementation. Each internal

node of a B-tree will contain a number of keys. The

keys act as separation values which divide its

subtrees. For example, if an internal node has 3 child

nodes (or subtrees) then it must have 2 keys: a1 and

a2. All values in the leftmost subtree will be less than

a1, all values in the middle subtree will be between

a1 and a2, and all values in the rightmost subtree will

be greater than a2. A B-tree is kept balanced by

requiring that all leaf nodes be at the same depth.

This depth will increase slowly as elements are added

to the tree, but an increase in the overall depth is

infrequent, and results in all leaf nodes being one

more node farther away from the root.

How does a b-tree help with database access?

 Most indexes are too large to fit into memory,

which means that they are going to be stored on disk.

Since I/O is usually the most expensive thing you can

do in a computer system, these indexes need to be

stored in an I/O e_cient way. A b-tree is a good way

to do this. If we make the nodes the size of a physical

I/O block, it would take one I/O to move to a lower

depth in the tree. A B-Tree utilizes the following

ideas to perform faster indexing of data -

A] keeps keys in sorted order for sequential

traversing

B] uses a hierarchical index to minimize the number

of disk reads

C]uses partially full blocks to speed insertions and

deletions

D]keeps the index balanced with an elegant recursive

algorithm

INDEXING IN EMMO DATABASE
Most of the tables in the emmo database have

millions of entries, especially the table ‘entitymain‘,

‘nodes‘ and ‘entitytype‘. So we need to create an

index for these tables so that searching becomes

easier.

 • entitymain is the most frequently accessed table in

the emmo database. It contains the identities of all

entities present in the emmo database. Any new entry

that is created whether its a lecture, a professor an

lmp, or a an association first needs to be defined in

the entitymain table. It has 3 columns in it - uuid,

entity kid,entityname. The best index for this table

would be a primary index on uuid. As uuid is the

parameter which is utilized for searches most of the

times so indexing the table and data storage in it on

the basis of uuid would be most search efficient. Also

creating an index on ‘entityname‘ would not serve

much purpose as databases themselves are not very

efficient in string searches. We would be using

lucene for performing searches on the text portions.

• nodes is the table utilized for finding the hierarchy

structure in the database. The entries are stored in the

format - parent,child. This table is indexed by

creating a primary index on the parent i.e. on emmo

id. It makes the searches fast as in this way all the

children associated with 1 parent can be found by just

finding one particular entry in a index. Also as in the

current database design a child does not have

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [237]

multiple parents and in current queries we do not

search for parents of multiple entities in a go so a

secondary index on ‘node id‘ would be an efficient

way of indexing the nodes table.

• entitytype table contains information about the type

of entity, whether its a course, a lecture, a professor

or a video etc. Again in this we have created a

primary index on ‘oid‘. Because most of the queries

fired on the entitytype table are the ones where we

are looking for entities of a particular type, say a

course, a lecture. Seldom we fire queries . which look

for the type of a particular entity, they can be served

by creating a secondary index on the ‘uuid‘ column.

QUERY OPTIMISATION

Join Ordering : A good ordering of join operations

is important for reducing the size of temporary

results, hence most query optimizers pay a lot of

attention to join order. The natural join operation is

associative

Optimizing ‘IN‘ Subquery in MySQL: The ‘IN‘

subquery is being utilized in our system at multiple

points. For instance if I have to find all the possible

courses in the database i throw a query like select

node id from nodes where emmo id in {select node

id from nodes where emmo id like CSE DEP T} -

(1)=> This query finds all the lectures available under

the CSE Dept. i.e. it finds the grandchildren of the

provided entity. Now if we closely analyze this

statement using the ‘EXPLAIN EXTENDED‘

statement in MySQL we find that the subquery on

‘nodes‘ table becomes a dependent subquery The

mySQL system treats a dependent subquery as a

‘correlated query‘. This correlated evaluation of

subquery is not very efficient since the subquery is

separately evaluated for each tuple in the outer query.

A large number of disk operations result. For every

row in the main table i.e. ‘nodes‘ a check is

performed using the dependent subquery if it satisfies

the ‘where‘ clause or not. This leads to a humongous

rise in execution time if the ‘nodes‘ table is huge in

size. Now to get around this inefficient query what

we can do is move the dependent subquery up to the

‘join‘ and make it a derived subquery. This process

of replacing a nested query with a join(possibly with

a temporary relation) is called decorrelation . If we

rewrite the above provided query as select node id

nodes E join {select node id from nodes where

emmo id like CSE DEP T} T on E.emmo id =

T.node id - (2) =>Now in this scenario the subquery

gets executed first as it is supposed to be joined with

the ‘nodes‘ table. On an approximate analysis the

children of a particular entity say CSE DEPT would

be much less than the size of the ‘nodes‘ table itself,

so the temporary relation that is created of all the

children of CSE DEPT is smaller in size and can be

stored in memory itself also the join of this relation

with the nodes table itself on the specified condition

becomes much faster as the ‘nodes‘ table is indexed

on emmo id and therefore this new query gives a

much quicker performance than the previous one.

NOTE : Tests were performed on a 2.4 GHz Core i5

Dell Latitude system with 4GB ram.

PROXYMITY WEB INTERFACE

The features provided can be classified into - content

creation, display, search and exporting of emmo data.

Content creation-

Instructor Creation : Using this feature we can

create a new instructor in our ProxyMITY system.

The newly created entity ‘Instructor’ is assigned the

ontology type ‘instructor’ and its name is stored in

the entitymain table. We have specified the

‘instructor’ as an emmo in our system.

Course Creation : It can be utilized to create a new

course. For the creation of a course we need to select

a predefined instructor to associate 54 with it. This

association between an instructor and the course is

stored in the associations table under the association

‘instructed by’.

 Lecture Authoring : It is utilized for adding

lectures to the course. We need to specify here the

speaker of the course which can be any one of the

instructors stored in the system, we also need to

choose the course in which this particular lecture is

going to be stored. In the backend the lecture entity is

stored as the child entity of the selected course. This

parent child relationship is stored in the ‘nodes’ table.

Viewer :This part of the system displays the lecture

content of the selected lecture. There is a topic tree

associated with every lecture which is basically topic

wise segregation of the lecture video. The basic

information about the lecture i.e. the course name,

speaker etc. are also displayed.

 Search : This interface provides the basic search

features on the database. We can type in keywords

and the search is performed across all the entities

present in the database.

EXPORTING EMMO’S
EMMO’s are designed as containers which can be

transferred from one system to another. The main

idea behind developing ProxyMITY using emmo

model is to allow seamless transfer of information. In

ProxyMITY a person say a professor or a teaching

assistant can create a lecture which can then be

transferred to another system say a remote system

which does not have Internet connection. The

container based structure of EMMO allows export

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [238]

and import of emmo structures. An EMMO container

can completely export EMMOs into bundles

encompassing the media, semantic, and functional

aspect, as well as the versioning information. As

EMMOs are capable of describing quite complex

knowledge structures, different export modes

reflecting only selected parts of an EMMOs content,

are provided.

OBSERVATIONS

To ensure that exporting can be done seamlessly even

on a database with large amount of data. We

performed a test where we exported 500 courses that

were part of a University. Each course had 10-15

lectures in it. Every lecture comprised of 15 emmo’s,

in which every emmo was basically an association of

2 lmp’s one denoting the slide and one denoting the

video. So in all there were approximately 2,75,000

entities that needed to be exported. The experiments

were performed a macbook pro with 2.4GHz Intel

Core 2 Duo Processor, 4GB 1067MHz DDR3 RAM.

The exporting of the 500 courses took 8 min 10 sec

and it generated a file of size approx 27MB on disk.

Also exporting of a single course i.e. approx 550

entities took 10 sec on the same system and generated

a file of size 45KB.

META-DATA EXTRACTION TOOLS

Slide Detection: We detect slide transition times by

using an algorithm which compares image files

generated by ffmpeg and then title extraction from

them using an Optical Character Recognition tool

tesseract. We extract information from lectures video

and presentation slides. Optical Character

Recognition is useful for extraction of textual

information from a video.

Optical Character Recognition : Optical Character

Recognition (OCR) extracts textual information from

an image. Our lecture video is divided into individual

frames as above which are then fed to OCR to give

textual content. We use a well known open source

tool Tesseract-ocr which is known for its accuracy in

recognition. It takes .tif images as input and produces

output text file. It takes an image and saves text

present in the image into a separate file. It accepts

images which are in TIFF format so we need to

convert images in other formats into TIFF. We use

the following commands to extract text from JPEG

image.

Content Extraction from a PDF file: We convert a

pdf file into images corresponding to each slide using

PDFBox. PDFBox is a JAVA library which can

handle different types of PDF documents including

encrypted PDF formats and extracts text and has a

command line utility as well to convert PDF to text

documents. Command : $ java -jar pdfbox-app-

1.7.0.jar PDFToImage lecture.pdf

 This converts all the pdf slides into jpeg images. We

then use these images in ProxyMITY. PDFParser

object is used to parse an input PDF file. The parsed

content is stored in COSDocument object. But this

content is not is text format. PDFTextStripper is used

to convert this content into a String. Now by using

PrintWriter object we output the extracted text to a

text file. We also extracted the content of each slide

into a single text file. This will be useful to directly

get the slide number of the information we are

searching for.

INTEGRATING SLIDE TEXT IN EMMO

DATABASE

In the above sections we utilized 2 separate

techniques - Optical Image Recognition and PDF to

text conversion to get the text content from the slides.

The basic way of integrating this slide text with the

slide in the database is to –

• store the slide content in a text file

 • represent the above created text file as an lmp in

EMMO database

• associate the slide image with the slide text with an

association TextContent Also along-with this we

need to index the slide text using lucene so that it

could be made searchable. We can create a lucene

index where every document represents a text slide

entity.

FIG: Respresenting Slide Text in EMMO

FUTURE WORK
Important aspect would be to integrate the video

subtitle information in the emmo database, so that

even the speech content of the speaker can be

searchable thereby providing a much more rich

experience to the users. More work is required in

direction of interoperability and standards as no. of

Text Content

LMP:Slide

Image

MediaProfile

Location of Image

File

LMP: Slide

Text

Media Profile

Location of Text

File

http://www.ijesrt.com/

[Gupta, 4(11): November, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [239]

multimedia application are increasing tremendously.

Also functionality of metadata can be extended by

better technique for automatic metadata creation and

harvesting metadata created by human[5]. The

application can integrate the media player with itself.

This will allow the editors to edit the details

simultaneously while watching the video. This will

decrease the amount of time required to create such

files and can also reduce the work load from the

editors.

CONCLUSION

An EMMO model has been built for the ProxyMITY

tool alongwith a backend database design and java

code for accessing the database. Now authoring of

content in ProxyMITY tool can be done, the new

content is going to be directly stored in the database.

The search performed over the learning objects

returns results quickly in real time thereby giving

user the most meaningful index in the video and not

forcing him to watch the entire video to reach the

point of interest. Also as the system does not have

any dependencies except MySQL and is made using

Open Source technology so it can be deployed on a

server and can become usable for the students and

teachers. Extracting contents from the slides has also

been discussed thereby providing much more

meaning to the content. The use of Lucene for

indexing the core table gives us the leeway to put as

much content as needed in the EMMO database

without worrying about slow search queries.

REFERENCES
1. Dipl. Math Sonja Zillner. A Query Algebra

for Ontology-enhanced Management of

Multimedia Meta Objects. PhD thesis,

University of Vienna, March 2005.

2. Performance and Scalability of EJB

Applications - Emmanuel Cecchet , Julie

Marguerite , Willy Zwaenepoel.

3. Akhil Deshmukh, Open source

implementation of Emmo model, for e-

learning content, Dual Degree Project, Stage

I report, October 2011

4. Ignatius Periera, Implementation of a

structured model (EMMO) for e-learning

content and information retrieval, Dual

Degree Project, Stage 2 report, June 2012

5. Paolo Boletteri, Favrizio Falchi, Claudio

Gennaro and Fausto Rabitti. Automatic

meta-data extraction and indexing for

reusing e-learning multimedia objects.

ACM, September 2007

6. Jane Greenberg: Metadata Extraction and

Harvesting: A Comparison of Two

Automatic Metadata Generation

Applications. Journal of Internet Cataloging,

6(4): 59-82.

7. Chao Boon Teo and Robert Khenge Leng

Gay. A knowledge driven model to

personalize e-learning. ACM Journal of

Educational Resources in Computing,

6(1):15, March 2006

[8] Internship work by Bineeta Kumari

Gupta in IIT Bombay 2012-

http://ekalavya.it.iitb.ac.in/summerintern

2012/viewProjects.jsp
8. Dual degree thesis of Anurag Sharma at

http://www.it.iitb.ac.in/frg/wiki/images/2/26

/Anurag_DDP_Stage2.pdf

AUTHOR BIBLIOGRAPHY

Bineeta Kumari

Gupta

Software Developer

2 in Oracle India

Pvt.Ltd

Graduate in CS

from VNIT,Nagpur.

Research

Interests: Database

mining, Database

management,

Algorithm

designing,

Distributted

computer network.

http://www.ijesrt.com/
http://ekalavya.it.iitb.ac.in/summerintern2012/viewProjects.jsp
http://ekalavya.it.iitb.ac.in/summerintern2012/viewProjects.jsp

